Применение непрерывного аналога метода Ньютона в задачах динамики пучков

Р.В. Полякова, И.П. Юдин

Лаборатория информационных технологий ОИЯИ, Дубна

Аннотация. Дано описание моделирования нелинейных задач динамики частиц ускорителей с использованием численных алгоритмов на базе непрерывного аналога метода Ньютона (НАМН). Приводятся результаты численного моделирования двух задач для ускорителей: 1) расчет системы транспортировки при быстром выводе пучка на ускорителях, 2) оптимизация длинных согласованных промежутков ускорителя и анализ нелинейных аберраций в них.

НАМН, предлагаемый в данной работе для решения первой задачи, позволяет оптимальным образом подобрать параметры элементов систем транспортировки и произвести их расстановку, а также сделать оценку допусков на эти параметры. Во второй задаче было проведено исследование нелинейных аберраций в квадрупольных линзах "невидимого" промежутка ускорителя и согласование его с учетом этих нелинейностей.

Введение. Создание новых ускорителей и реконструкция действующих требует решения нелинейных задач, математическое моделирование которых приводит к важным и интересным математическим задачам. Многие из них являются настолько сложными нелинейными задачами, в том числе и обратными, что единственная возможность исследования их состоит в разработке численных алгоритмов и реализации последних на персональном компьютере. К указанным проблемам относится, в частности, задача определения оптимальных (в смысле каких-либо критериев качества) параметров P_i систем транспортировки заряженных частиц с учетом разного рода нелинейных эффектов, расчет согласованных "невидимых" прямолинейных промежутков ускорителя. Все выше названные физические проблемы математически сводятся к решению краевой задачи для нелинейных обыкновенных дифференциальных уравнений 2-го порядка. Подробное описание численного метода и алгоритма НАМН математического моделирования физических задач дано в работах [1-3].

1. Физическая постановка задачи. На рис. 1 приведена модель системы транспортировки заряженных частиц с выбранной системой координат.

На рис. 2 приведен один из возможных вариантов структуры "невидимого" промежутка. Физическая задача транспортировки заряжен-

Рис. 1: Схема системы транспортировки.

ных частиц ставится следующим образом. Задаются направление и координаты пучка заряженных частиц на входе транспортной системы - $(\alpha_0, \alpha_{0\perp}, s_0, x_0, y_0), (s_0, x_0, y_0)$ – координаты начальной точки траектории в прямоугольной системе координат физической установки, α_0 - угол в радианах между касательной к проекции траектории в точке (s_0, x_0, y_0) на плоскость "SX" и осью "S"; $\alpha_{0\perp}$ – угол в радианах между касательной к проекции траектории в точке (s_0, x_0, y_0) на плоскость "SY" и осью "S". Необходимо подобрать параметры $(P_1, P_2, P_3 \cdots;)$ так, чтобы по заданному начальному положению и направлению частицы получить ее заданное конечное положение и направление - $(\alpha_k, \alpha_{k+}, s_k, x_k, y_k), (s_k, x_k, y_k)$ – координаты конечной точки траектории в прямоугольной системе координат физической установки, α_k и $\alpha_{k\perp}$ тоже, что и α_0 и $\alpha_{0\perp}$ соответственно в точке $(s_k, x_k, y_k).$

2. Математическая постановка задачи. Движение заряженных частиц в магнитном поле описывается полными уравнениями в прямоугольной системе координат:

$$\begin{cases} \frac{d^2x}{ds^2} = \frac{A}{B_0 R_0} \varphi(s, x, y, x'_s, y'_s, B_s, B_x, B_y, P_i) \\ \frac{d^2y}{ds^2} = \frac{A}{B_0 R_0} \psi(s, x, y, x'_s, y'_s, B_s, B_x, B_y, P_i) \end{cases}$$
(1)

где B_0R_0 – магнитная жесткость частицы и $\frac{1}{B_0R_0} = \frac{e}{p}, p$ – импульс частицы, $A = \sqrt{1 + (x'_s)^2 + (y'_s)^2}, P_i$ – параметры, физический и математический смысл которых в каждом кон-

Рис. 2: Структура "невидимого" прямолинейного промежутка с нелинейными корректирующими элементами

кретном случае определен. Компоненты поля $B(B_s, B_x, B_y)$ в каждом конкретном физическом случае определяются аналитически или численным путем, если поле задано в виде таблицы. Величины B_s, B_x, B_y являются нелинейными функциями от (s, x, y) и могут также зависеть от параметров P_i .

Запишем краевые условия:

$$\begin{cases} x(s_0, P_i) = x_0, & x'_s(s_0, P_i) = \operatorname{tg} \alpha_0, \\ y(s_0, P_i) = y_0, & y'_s(s_0, P_i) = \operatorname{tg} \alpha_{0\perp}, \\ x(s_k, P_i) = x_k = a, & x'_s(s_k, P_i) = \operatorname{tg} \alpha_k = c, \\ y(s_k, P_i) = y_k = b, & y'_s(s_k, P_i) = \operatorname{tg} \alpha_{k\perp} = d. \end{cases}$$
(2)

3. Метод решения краевой задачи (1, 2). Систему уравнений (1) сводим к системе уравнений 1-го порядка заменой: $x'_s = x_1$ и $y'_s = y_1$:

$$\begin{cases}
(x_1)'_s = \frac{A}{B_0 R_0} \varphi(s, x, y, x_1, y_1, B_y, P_i) \\
(y_1)'_s = \frac{A}{B_0 R_0} \psi(s, x, y, x_1, y_1, B_y, P_i) \\
x'_s = x_1 \\
y'_s = y_1
\end{cases}$$
(3)

Математически краевая задача формулируется следующим образом: необходимо подобрать параметры P_i так, чтобы траектория движения заряженных частиц удовлетворяла уравнениям (3) и следующим краевым условиям:

$$\begin{cases} x(s_k, P_i) = x_k(P_i) = a, \\ y(s_k, P_i) = y_k(P_i) = b, \\ x_1(s_k, P_i) = x_{1k}(P_i) = c, \\ y_1(s_k, P_i) = y_{1k}(P_i) = d. \end{cases}$$
 MJH

$$\begin{cases} f_1(s_k, P_i) = x_k s_k, P_i) - a = 0, \\ f_2(s_k, P_i) = y_k(s_k, P_i) - b = 0, \\ f_3(s_k, P_i) = x_{1k}(s_k, P_i) - c = 0, \\ f_4(s_k, P_i) = y_{1k}(s_k, P_i) - d = 0. \end{cases}$$
(4)

Получена система 4-х уравнений, из которой можно одновременно определить четыре параметра P_i , $i = 1 \div 4$. Выполнение краевых условий (4) достигается при варьировании этих параметров. Систему уравнений (4) будем решать методом введения параметра t, считая, что P_i есть функции от t, т.е. $P_i = P_i(t)$.

На основании данного метода имеем:

$$\begin{cases} \frac{\partial}{\partial t} f_1(s_k, P_i) = -f_1(s_k, P_i), \\ \frac{\partial}{\partial t} f_2(s_k, P_i) = -f_2(s_k, P_i), \\ \frac{\partial}{\partial t} f_3(s_k, P_i) = -f_3(s_k, P_i), \\ \frac{\partial}{\partial t} f_4(s_k, P_i) = -f_4(s_k, P_i) \end{cases}^{\text{ИЈИИ}} \\ \begin{cases} \sum_{i=1}^{4} (x_k)'_{P_i} P'_{it} = -(x_k - a), \\ \sum_{i=1}^{4} (y_k)'_{P_i} P'_{it} = -(y_k - b), \\ \sum_{i=1}^{4} (x'_k)'_{P_i} P'_{it} = -(x'_k - c), \\ \sum_{i=1}^{4} (y'_k)'_{P_i} P'_{it} = -(y'_k - d), \end{cases}$$
(5)

Из системы уравнений (5) определяем P'_{it} , $i = 1 \div 4$. Затем, используя формулу $P'_{it} = \frac{P_i(t + \Delta t) - P_i(t)}{\Delta t}$, где Δt -шаг по переменной t, получаем значения параметров P_i на следующем шаге по t: $P_i(t + \Delta t) = P_i(t) + P'_{it}\Delta t$. Значения $P_i(t_0)$ – заданы (начальное приближение для $t_0 = 0$). Таким образом, нахождение искомых параметров производится методом итераций и может быть осуществлено с заданной точностью.

4. Применение описанного метода к некоторым физическим задачам.

Задача 1. Расчет системы транспортировки. Предполагалось, что в систему транспортировки входят два поворотных магнита (см. рис.1). Положение магнитов в пространстве определялось следующими параметрами: d_1, d_2 - расстояние центров магнитов от оси "S"; l_1, l_2 – расстояние центров магнитов от оси "X": γ_1, γ_2 – горизонтальные углы разворота магнитов

Таблица.

$d_1(\mathbf{M})$	$d_2(\mathbf{M})$	$B_1(\mathbf{T})$	$B_2(T)$	$y({ m M})$	$\operatorname{tg} \alpha(\operatorname{pad})$
0,55	0,77	-0,0100	-0,0099	1,434899	0,2573
0,55	0,77	-0,0099	-0,0099	1,433140	0,2569
0,55	0,77	-0,0099	-0,0100	1,433640	0,2573
0,55	0,77	-0,0099	-0,0099	1,433730	0,2610
0,55	0,77	-0,0099	-0,0099	$1,\!436530$	0,2600

Рис. 3: Зависимость набега фаз $\Delta \psi_x(1)$ и $\Delta \psi_y(2)$ от величины додекапольной нелинейности

относительно оси "Y"; $\gamma_{1\perp}, \gamma_{2\perp}$ – вертикальные углы разворота магнитов относительно оси "X"; β_1, β_2 – вертикальные углы разворота магнитов относительно оси "S". В качестве варьируемых параметров брались комбинации по четыре параметра, куда обязательно входили индукции магнитов B_1 и B_2 . В таблице приведены координаты и углы пучка на выходе системы в зависимости от изменения выбранных параметров $P_1 = B_1$, $P_2 = B_2, P_3 = d_1, P_4 = d_2$.

Задача 2. Оптимизация длинных согласованных промежутков ускорителя.

В современных жесткофокусирующих ускорителях организация системы ввода-вывода пучка, размещение ускоряющей станции и т.д. требует длинных свободных промежутков (см. рис.2). Вторая физическая задача была посвящена исследованию нелинейных аберраций в квадрупольных линзах такого промежутка и согласованию его с учетом этих нелинейностей. Расчеты свободного промежутка проводились с учетом нелинейных эффектов в линзах с использованием выше описанной методики. В качестве варьируемых параметров брались градиенты линз (G_1, G_2, G_3) , их длины (l_1, l_2, l_3) , а также пространства дрейфа (L_1, L_2, L_3) . Численные эксперименты показали, что наилучшее согласование дает так называемое "нелинейное" согласование, которое достигается путем введения в структуру промежутка нелинейных корректирующих

Рис. 4: Зависимость набега фаз $\Delta \psi_x(1)$ и $\Delta \psi_y(2)$ от величины эмиттанса пучка для $c_6 = 1\%$

элементов с величинами: $G_N = -4,643 \text{ T/m}, l_N = 0,132 \text{ м}, L_N = 0,100 \text{ м}.$ Набеги фаз для "нелинейно" согласованного промежутка в зависимости от эмиттанса пучка приведены на рис. 3, 4. Из этих рисунков видно, что "нелинейное" согласование примерно на порядок уменьшает вызванный нелинейностями в линзах набег фаз на промежутке.

Заключение. Предложен общий подход к решению задач транспортировки заряженных частиц, согласования прямолинейных промежутков, в основу которого положен непрерывный аналог метода Ньютона (НАМН). Развитый метод эффективен для решения описанных модельных краевых задач, связанных с конструированием ускорительных систем, что сохраняет и время и стоимость их создания.

Список литературы

- Жидков Е.П., Пузынин И.В. и др.: Непрерывный аналог метода Ньютона в нелинейных задачах физики, ЭЧАЯ, т.4, вып.1, 1973.
- [2] Полякова Р.В., Юдин И.П.: CONTINUOUS ANALOGUE OF NEWTON METHOD IN BEAM DYNAMICS PROBLEMS, Вестник РУДН є2, 2011 г, стр. 76-84.
- [3] Полякова Р.В., Юдин И.П.: Математическое моделирование нелинейных задач динамики частиц в ускорителе с помощью Непрерыного Аналога Метода Ньютона, в тезисах конференции МКО, Пущино, январь 2013 г.